Urea

Urea

Turkmenistan and Uzbekistan Prilled and Granular Urea fertilizer

We can supply granular and prilled urea fertilizer on FOB and CIF basis.

More than 90% of world industrial production of urea is destined for use as a nitrogen-release fertilizer.[6] Urea has the highest nitrogen content of all solid nitrogenous fertilizers in common use. Therefore, it has the lowest transportation costs per unit of nitrogen nutrient.

Many soil bacteria possess the enzyme urease, which catalyzes conversion of urea to ammonia (NH3) or ammonium ion (NH4+) and bicarbonate ion (HCO3). Thus urea fertilizers rapidly transform to the ammonium form in soils. Among the soil bacteria known to carry urease, some ammonia-oxidizing bacteria (AOB), such as species of Nitrosomonas, can also assimilate the carbon dioxide the reaction releases to make biomass via the Calvin cycle, and harvest energy by oxidizing ammonia (the other product of urease) to nitrite, a process termed nitrification.[7] Nitrite-oxidizing bacteria, especially Nitrobacter, oxidize nitrite to nitrate, which is extremely mobile in soils because of its negative charge and is a major cause of water pollution from agriculture. Ammonium and nitrate are readily absorbed by plants, and are the dominant sources of nitrogen for plant growth. Urea is also used in many multi-component solid fertilizer formulations. Urea is highly soluble in water and is therefore also very suitable for use in fertilizer solutions (in combination with ammonium nitrate: UAN), e.g., in ‘foliar feed’ fertilizers. For fertilizer use, granules are preferred over prills because of their narrower particle size distribution, which is an advantage for mechanical application.

The most common impurity of synthetic urea is biuret, which impairs plant growth.

Urea is usually spread at rates of between 40 and 300 kg/ha but rates vary. Smaller applications incur lower losses due to leaching. During summer, urea is often spread just before or during rain to minimize losses from volatilization (a process wherein nitrogen is lost to the atmosphere as ammonia gas).

Because of the high nitrogen concentration in urea, it is very important to achieve an even spread. The application equipment must be correctly calibrated and properly used. Drilling must not occur on contact with or close to seed, due to the risk of germination damage. Urea dissolves in water for application as a spray or through irrigation systems.

In grain and cotton crops, urea is often applied at the time of the last cultivation before planting. In high rainfall areas and on sandy soils (where nitrogen can be lost through leaching) and where good in-season rainfall is expected, urea can be side- or top-dressed during the growing season. Top-dressing is also popular on pasture and forage crops. In cultivating sugarcane, urea is side-dressed after planting, and applied to each ratoon crop.

In irrigated crops, urea can be applied dry to the soil, or dissolved and applied through the irrigation water. Urea dissolves in its own weight in water, but becomes increasingly difficult to dissolve as the concentration increases. Dissolving urea in water is endothermic—the solution temperature falls when urea dissolves.

As a practical guide, when preparing urea solutions for fertigation (injection into irrigation lines), dissolve no more than 3 g urea per 1 L water.

In foliar sprays, urea concentrations of between 0.5% and 2.0% are often used in horticultural crops. Low-biuret grades of urea are often indicated.

Urea absorbs moisture from the atmosphere and therefore is typically stored either in closed or sealed bags on pallets or, if stored in bulk, under cover with a tarpaulin. As with most solid fertilizers, storage in a cool, dry, well-ventilated area is recommended.

 

×
×

Cart

Don't Miss Our Offers !